[Creating a topic for this field since there was none yet]
This audio is programmed to change your eyes to blue color.
In humans, eye color is determined by the amount of light that reflects off the iris, a muscular structure that controls how much light enters the eye. The range in eye color, from blue to hazel to brown, depends on the level of melanin pigment stored in the melanosome “packets” in the melanocytes of the iris. Blue eyes contain minimal amounts of pigment within a small number of melanosomes. Irises from green–hazel eyes show moderate pigment levels and melanosome number, while brown eyes are the result of high melanin levels stored across many melanosomes.
To date, eight genes have been identified which impact eye color. The OCA2 gene, located on chromosome 15, appears to play a major role in controlling the brown/blue color spectrum. OCA2 produces a protein called P-protein that is involved in the formation and processing of melanin. Individuals with OCA2 mutations that prevent P-protein from being produced are born with a form of albinism. These individuals have very light colored hair, eyes and skin. Non-disease-causing OCA2 variants (alleles) have also been identified. These alleles alter P-protein levels by controlling the amount of OCA2 RNA that is generated. The allele that results in high levels of P-protein is linked to brown eyes. Another allele, associated with blue eye color, dramatically reduces the P-protein concentration.
On the surface, this sounds like the dominant/recessive eye color model that has been taught in biology classes for decades. However, while about three-fourths of eye color variation can be explained by genetic changes in and around this gene, OCA2 is not the only influence on color. A recent study that compared eye color to OCA2 status showed that 62 percent of individuals with two copies of the blue-eyed OCA2 allele, as well as 7.5 percent of the individuals who had the brown-eyed OCA2 alleles, had blue eyes. A number of other genes (such as TYRP1, ASIP and ALC42A5) also function in the melanin pathway and shift the total amount of melanin present in the iris. The combined efforts of these genes may boost melanin levels to produce hazel or brown eyes, or reduce total melanin resulting in blue eyes. This explains how two parents with blue eyes can have green- or brown-eyed children (an impossible situation under the Davenport single gene model) – the combination of color alleles received by the child resulted in a greater amount of melanin than either parent individually possessed.
You can use headphones and speakers. We recommend speakers so it can affect your whole body /subconsciousness mind/.